
1

Create
games faster
and scale
your studio
You’re not just building a game.

You’re building a business.

Advice and insights from

MULTIPLAYER GAME REPORT

2

What’s inside
Introduction					 3

Key lessons 					 5

Data organisation				 7

Chapter 1: Build system			 9

Chapter 2: Distribution system		 13

Chapter 3: Backend system			 17

Chapter 4: Orchestration system		 21

Chapter 5: Crash reporting			 25

Bring everything together			 29

About the authors				 30

Stay a game
developer, not a

software engineer

Start making
money from
your games

Game development is a dream job for many. But
moving to full-time can seem daunting. In this
report, we’ll look at exactly how you can make that
transition.

We’ll be answering
three big questions:
•	 How do you create an efficient game studio?
•	 What are the best practices for making a fun

game?
•	 Which tools should you use to make your

process more reliable?

This report isn’t about monetization strategies or
squeezing every last penny out of your players.

Creating profitable games is all about your process.

You want your team to be able to collaborate with
each other easily. You want to be able to scale and
grow. And you want to save time and money, so you
can focus on actually making a good game.

3

4

How do successful studios
run their business?
In today’s age, it’s never been easier
to develop and release a game. There
are so many tools and services that
make the process far easier than it ever
was before. But unfortunately, many
developers don’t earn as much as they’d
like. They create a great game but don’t
do well commercially.

According to VGInsights, over half of
indie developers on Steam made
less than $1,000 from their games.
In fact, it generally takes about three
games to start making more than
$100,000.

No’ of devs by lifetime
gross revenue
VGInsights: As of Feb 2022 (# of devs on Steam)

No’ of devs by lifetime
gross revenue
VGInsights: As of Feb 2022 (# of devs on Steam)

These stats can be misleading at first
glance. Most developers in the lower
brackets are learners and hobbyists. It’s
so easy to make and release a game
that these developers skew the data.
We can ignore those.

You’re far more likely to be in – or
heading towards – the middle category:
the serious game developer. You’ve
made a nice amount from your games,
and now looking to create or scale your
studio.

<$1K			 25.1K devs

$1 - $10K		 8.8K devs

$10K - $100K		 5.6K devs

$100K - $1M		 3K devs

$1M+ 			 1.6K devs

Avg. revenue
per game

Avg. #1 of
games released

The learner

The hobbyist

The indie

The full-timer

The success story

$294

$2,274

$14,999

$111,172

$3,655,808

1.1

1.6

2.4

3.0

4.5

https://vginsights.com/insights/article/there-are-44000-game-developers-on-steam-who-are-they
https://vginsights.com/insights/article/there-are-44000-game-developers-on-steam-who-are-they
https://vginsights.com/insights/article/there-are-44000-game-developers-on-steam-who-are-they
https://www.gamedeveloper.com/game-platforms/what-can-we-learn-from-the-1-600-highest-earning-indie-developers-on-steam-
https://www.gamedeveloper.com/game-platforms/what-can-we-learn-from-the-1-600-highest-earning-indie-developers-on-steam-
https://www.gamedeveloper.com/game-platforms/what-can-we-learn-from-the-1-600-highest-earning-indie-developers-on-steam-

5

How do
you move
along the

{brackets?}
There’s a consistent theme among the
top developers. They’ve been persistent
and learned valuable lessons along the
way. They’ve started treating their
studio like a business.

5

6

1. Playtest often and have a
strong release strategy

You don’t create a great game in a
vacuum. You need to start getting
feedback as soon as possible. As soon
as someone else can play your game,
you should be playtesting.

How else can you know if your game
is fun? It’s only when real people get
their hands on your game that you can
realise whether the core loop works or if
a mechanic is balanced.

But you need to be careful when
releasing early. Build too much hype
and release with lots of bugs, then
you’re just going to disappoint your
players. Better to start playtesting
internally and then quietly release an
early access version to iron out any big
mistakes, before you make a big public
splash.

2. Take ownership of more than
just the game

It’s not just about the gameplay and
story. Obviously, those are essential. But
you’re also responsible for everything
around the game, particularly if
you’re including multiplayer or any
subscriptions. Now, you don’t just have
players. You have customers. Customers
who’ll get angry if your infrastructure
fails and your game goes down.

In fact, it’s not just your game going
down that could be a problem. You also
need to make sure that players have a
fast and stable connection. Latency is
the new downtime – too much lag is
the same as the game going down.

So you need to make sure the game
is fair and balanced. Match people of
similar skills. Keep your servers online.
Fix problems and crashes. Manage
game updates while players are actually
playing.

That’s not to mention all the
unglamorous parts of game development.
Creating a game is only the beginning.
You also need to package your build,
distribute it to players, run marketing
campaigns, and host the data
somewhere. How do you do all that
efficiently?

3. Be aware of the ongoing costs

The only way to keep on top of these
responsibilities is to run your studio like
a business.

And with that, there are three areas that
will inevitably affect your costs: People,
Processes and Products. The three Ps.
They’re the cornerstone for everything
your business does. Every task is going
to impact one of these three areas,
so you want to keep the direct (and
indirect) costs as low as possible. The
trick is how.

4. Get help, so you can focus on
your game

The best way to keep your costs down is
to find the right balance between making
or buying. Do you spend time making it
yourself or use a third-party tool? Every
project will be different, of course. But
the areas you want to work on yourself
should be where you’re bringing the
most value to your customers.

It might be worth buying temporarily,
though. Just make sure you set a
defined threshold for when you make the
switch. For example, you might decide to
use a third-party authentication system
until you get a million players, at which
point you can make your own.

So what exactly have they learned?

6

It’s all about
managing
the flow
of data
efficiently

Everything comes down to data. You
need to check that your game actually
builds and works correctly. You can test,
but unfortunately the majority of errors
will crop up in production. Once your
game is live, there will be a ton of data
flowing between you and your players,
as well as between your players.

You want to be able to see and
understand that data. So make sure
you have the right observability tools in
place (and the right alarms). Of course,
monitoring alone isn’t enough. You want
to manage and tackle updates correctly,
too. Sometimes, you might even need
to run multiple versions of your game
at once, before you decide to roll out
globally.

How will you share
realtime data between
players?

ORCHESTRATION
PLATFORM4How will you know if

your game crashes on
your player’s machine?

CRASH REPORTING
SYSTEM5

How do you store data
that multiple people
can access?

BACKEND
SYSTEM3How do you get your

game to your team
members and players?

DISTRIBUTION
SYSTEM2How do you turn

your game into a
playable file?

BUILD
SYSTEM1

Your
game

Team member

Team member

Team member

Team member

Player

Player

Player

Backend
server

Real-time
multiplayer

servers
Crash

reporting

Player

How data flows through your game

7

8

1. Your build system
How will you compile your data into a
single file? The faster you can create a
new build, the faster you can playtest.
But you don’t just need to create your
final build, you need a way to make
sure that it works.

2. Your distribution
How will you transfer large amounts
of data? Your team needs to regularly
download your game from somewhere.
But you don’t want to wait hours every
time you release a new version.

3. Your backend
How will you store data that multiple
people can access? As soon as you
want to share data between two people
– even a simple leaderboard – you
need a central server to store it.

4. Your orchestration
How will you share real-time data
between players? Online matches rely
on fast connections, so you need to
make sure you’re hosting those sessions
as close as possible to the players.

5. Your crash reporting
How do you collect data about
problems? You can’t predict how your
game will react to every machine. But
the only way you’ll know if it’s crashing
is if you have a way to collect that data.

All of these tasks are about managing
and moving around data. The faster
you can do them, the faster you can
playtest and improve your game.

Online games are large, complex
programs that generate a lot of data. So
there are five parts of your process that
you need to make sure runs smoothly.

Stay a game developer,
not a software engineer
All these tasks have one thing in
common. They’re the unglamorous parts
of game development – the nitty-gritty
reality behind the scenes. In fact, they’re
not game development at all. They’re
about software engineering or network
management.

As essential as these elements are,
they’re not what differentiates your
game from anyone else. It’s possible to
create these systems yourself, but it’s
not a productive use of your time. You
wouldn’t expect an accountant to create
their own spreadsheet editor.

The difference in game
development is that

most developers don’t
realise the tools are

already out there.

So we’ve spoken to the experts in
each of these five areas to help you
understand the best practices and what
to look for in your tools.

9

How do you
playtest faster?

Chapter one

Choose a build system

Focus on perfecting your build process

A game isn’t a game until you’ve got
that final executable that someone can
double-click and install. It’s the moment
that everything comes together. But
there’s typically a whole process to
taking all your changes and packaging
them up into a form that people can
actually play. This is the build process.

Running through that process manually
can often take hours. And you can’t
be certain the end result will even run.
The bigger your team gets – the more
people working on the code – the more
likely it is that someone will break the
build.

“Some teams will have
a ten-page document
somewhere telling them
how to create their build,”
Sean Saleh – co-founder
and head of BespokeCI –
told us.

This is a tiresome process. At the very
least, you want to create that document
– you don’t want that information only
living inside one person’s head. But
ideally, you’ll want to automate as much
of it as possible.

“That document might
have a list of tasks:
install this library, change
these settings to disable
cheats, choose this server,
download this certificate,
update the version
information. And that’s
just to do it on your own
computer.”

10

Create a
playtest build
every day
New developers can often believe
that creating their build is the final
step. Finish the code, compile it, and
simply send it off into the world. But
the reality is that you’ll probably want
to create hundreds of builds before
you’re even close to launching.

“In the early stages of
development, the most
important thing you can
do is play your game
together,” Sean explained.
“But because building
the game can be painful,
developers often avoid
doing it.”
In fact – in an ideal world – you
should be creating a new build every
night. A fresh version, ready for
your team to play together the next
morning. The end of the day is a
natural stopping point for everyone,
making it an ideal cutoff point to
make sure you’re all working from the
same version the next day.

Another reason to playtest regularly is
to catch exactly which change caused
a problem.

“Imagine you make a
balance change to your
game that makes the game
less fun,” Sean said. “How
long does it take you to
discover that? If you’re
playing every day, you find
out instantly. If you’re only
testing every two weeks, it
takes far too long to realise
you made a mistake.”
It isn’t just about the quality of your
game. It’s also about getting into good
habits once you’ve released your game
into the wild.

“Building regularly lets
you practise shipping
something every night,”
Sean added. “You see
some developers taking
months to come out
with their first patch or
hotfix, because they’re not
familiar with making new
versions. If they knew how
to release changes more
frequently, their players
would be happier.”

10

Build a clean
version
occasionally
One trap that developers can fall into
is only ever using one machine. They
don’t create what’s known as a “clean
build” – a build on a fresh computer.
Instead, they only ever create an
“incremental build” – building on a
machine that’s done it before.

“Entropy can accumulate
on a machine, though,”
Sean said. “So you try
to install the game and
it just won’t work. For
example, you might have
deleted a library from
your package, but that
library is still on your
computer. It’ll run just
fine on your machine,
but not on anyone
else’s.”

It’s a tradeoff between time and
reliability. You don’t need to create
a clean build every single time. A
clean version can take hours, while
an incremental one might only take
minutes. So you want a mix of both.

Refine your
process to
iterate faster
No game is perfect after the first build.
You’ll inevitably find bugs, balancing
issues and ways to improve the
experience. It’s only normal. There’s a
natural cycle to development: create a
build, test it out, make changes, create
a new build.

The trick is to make that cycle as
smooth as possible. How can you go
through the process as efficiently as
possible? One way to check how well
you’re doing is to keep track of four key
metrics:

•	 Your lead time for changes. How
long does it take to make your
changes?

•	 Your deployment frequency. How
often are you making a new build?

•	 Your change failure rate. What
percentage of builds fail?

•	 Your time to restore service. How
fast can you get a working version
out?

The first two metrics are subtly different
from one another. You might be able to
add new changes to your source code
every hour. But you might want to wait
until you’ve had a few come in before
creating a new build.

11

12

“These metrics aren’t
just technical. They’re
organisational,” Sean
added. “You don’t just fix
a typo and immediately
release it to all your
players. You still have to
deal with packaging it all
up, getting it approved and
releasing it across different
platforms at the same
time. So you probably want
to just include it in your
next patch.”
There’s another difference between your
internal and external versions. Internally,
you want to be regularly releasing new
builds so your team can make sure it’s
fun. But externally, you need to make
sure the build is stable. So your metrics
for each type of build are going to be
different.

The faster your development cycle, the
more you can test it out. The more you
test, the better your game will be. And
the fewer mistakes you’ll have, as you’ll
spot problems earlier.

Having a build system helps you
streamline your process and playtest
more often. BespokeCI is a build system
that does all the heavy lifting for you.

•	 Test before you commit. BespokeCI
not only automates your process,
but checks whether your changes
will break the build. Before it goes
out to the rest of the team.

•	 Create multiple builds. Set up
different builds based on what each
team needs.

•	 Integrate easily. BespokeCI already
has integrations with the most
popular source control systems,
like GitHub and Perforce, as well as
Unity and Unreal.

“We walk you through the whole
process, so you’re only doing the
bare minimum needed,” Sean
said. “You don’t have to learn
all the topics or hire a build
engineer.”

Get started early
with
If you’re early in your development
process and haven’t raised your funding
yet, don’t worry. BespokeCI offers help
to indie developers to get them on their
feet.

“We’re happy to work with teams
to get their build system set up
early so that when they scale up
their team, they have what they
need,” Sean explained.

Automate your process

https://bespokeci.dev/?utm_source=gameye-report

13

How do you
collaborate as
a team?

Chapter two

Choose a distribution system

Transfer large files between team members

Games are inevitably large files. And
whenever a player or a team member
wants the latest version, they need to
transfer that file and install it on their
machine.

Not only do you want to do that as
efficiently as possible, you also need to
consider how you’ll keep it secure, scale
your storage, and deliver it to the end
platforms.

13

14

Distribute
multiple
versions of
your game at
once
During development, you’ll need more
than one version of your game at any
given time. Maybe you need to roll
back to a previous version or you want
to A/B test a new mechanic. Maybe
you have separate teams working on
different parts of the game and haven’t
brought those changes together yet.

“We’ve seen smaller indies
use Steam, Unreal, or even
Google Drive to store and
distribute their builds,”
explained Fabian Ahmadi
– the co-founder and head
of Sales at Solsta.io

“But this is a hack. Those
systems weren’t designed
around the complexities
of the design process.
Some studios might have
80 different environments
they need to run. Steam
just isn’t intended to be
used that way.”
This creates a lot of bloat and repeated
data to store all those different versions.
And, inevitably, studios adjust their
own process to fit around the systems
they’re using, rather than finding a
system that works for them. But this
can create bottlenecks that make it
much harder to release on schedule.

Take a simple playtest. It’s Tuesday
night and you have a team of ten
people. In the morning, everybody hits
the server and tries to download the
latest version. Even if you’re not all in
the same office, you’re still going to get
a congestion issue.

14

“You need a cache server
– a repeater hub,” Gammy
Pichardo, Customer
Success Manager at Solsta,
said.

“You need that data
to come over the local
network, rather than
the internet. But it’s
challenging to build
something like that
yourself – you’d have to
manage a storage server
on site that would be
massive.”

Distribute
across different
platforms
Creating a build for Mac, console or
mobile takes a lot more effort than for
PC. There’s usually a manual process to
download the files, make a few changes,
and then install the game.

“Every platform has a
different process,” Fabian
said. “What you need is a
centralised control system
– a single solution that
can automatically grab the
right build for the platform
it’s on.”
Releasing a game can take even more
steps, as many platforms have approval
processes you need to go through.
These steps can seriously delay a new
patch on the platform and slow down
your development cycle. The more you
can reduce this friction, the easier it is
to synchronise your releases so that
 your updates arrive to all your players
 at the same time.

15

16

Cut out the
unnecessary
risk
Manual steps always introduce an
element of human error. The more you
can automate, the less chance there is
for a problem to occur.

“When people think about
risk, they tend to think of
big risks – the game failing
or crashing,” Fabian said.
“But there are small risks,
too. Six hours wasted time
because the QA person
downloaded the wrong
version. That’s risk.”
These small risks are more insidious
and they can compound. Each one has
the potential to seriously delay your
game or anger your players.

“Making games is already
a risky job, so you want
to eliminate as many
as you can,” Fabian
added. “There’s a lot you
can’t control. But your
distribution is a risk that
you don’t need to have.”

As you can see, transferring and storing
large amounts of data is extremely
time-consuming and difficult. That’s
why Solsta has a different approach.
Rather than transferring the whole
file, they split the files into more
manageable chunks and only transfer
the ones that have changed.

“We never upload the same piece
of data twice,” Gammy said.
“We scan, transform, compress
and secure your data and you
upload the differences. This way,
it doesn’t grow exponentially and
your storage footprint can stay
small.”

Not only does it make transferring files
more efficient, but it gives you much
more control over your data and helps
you keep it secure.

•	 Keep track of your version history.
Easily roll back to an older version
without needing huge amounts of
storage for backups.

•	 Automate your process. Solsta
integrates with your build system so
that you can easily make sure that
you always have access to every
version of your game.

•	 Release across platforms
simultaneously. If you need to
release on console and PC, you can
easily distribute your builds to any
device.

•	 Keep your data secure. Regardless
of your size, it’s important to know
who has access to your game. Solsta
is SOC2 and ISO 27001 certified
and also supports Fine Grain
Authentication to define your users
and keep track of who has access.

Start using
for free
Teams of up to five people can sign up
and start using Solsta for free. So you
can try it out and see whether it works
for your studio.

Upload only the changes

https://solsta.io/?utm_source=gameye-report

17

How do you
get to market
faster?

Chapter three

Choose a backend system

Add features easily with a backend system

The moment you want to share data
between two clients, you need a central
place to store that data. Leaderboards,
guild information, chat functions,
news feeds, usernames, subscription
information, and even seasonal event
content.

That’s your backend. All the content and
information that isn’t local to the player.
The meta-features, mechanics and
content that isn’t baked into your game.

“In the old days,
everything was stored
on the device,” Trapper
Markelz – co-founder and
chief operating officer at
Beamable – told us.

“Nowadays, players expect
an expansive and engaging
metagame. But as soon as
you need to share data
between players, you need
a backend.”

17

18

Keep your
game secure
Even just setting up a simple
leaderboard can cause a headache. On
the surface, it might seem like a trivial
task. Just whip up a web app and set
up an API.

But in reality, you’re taking on a large
responsibility. You’re not just storing
the score, you have the player’s
personal details. What happens when
you have thousands or millions of
players? Will your database that holds
the leaderboard scale? And how do
you make sure people don’t hack your
database, put themself at the top, and
take the best prizes?

“The risks are high if you
get it wrong,” Trapper
said. “You can ruin your
company if the game can’t
stay online, if you can’t
scale to meet demand, if
your game features don’t
perform, or if you get
hacked.”

Don’t reinvent
the wheel
Creating backend systems is a complex
task. There are difficult technical
challenges to overcome, and physical
infrastructure to make it all work. While
they’re important to modern games,
they’re time-consuming to create
yourself.

“The number one marker
of a successful game is
that it ships quickly,”
Trapper said. “Too many
games only get to market
when they’re already
running out of money. You
want to get out early and
start getting data from
your players.”
All the time and energy you spend
creating backend systems yourself is
time you’re not working on the most
important thing: making your game fun.

“Too many developers
think they need to own
everything. But these
elements don’t differentiate
your game at all,” Trapper
explained. “Your inventory
system is not what’s going
to set your game apart.
The players won’t care.
So don’t try to reinvent
everything.”
That doesn’t mean you don’t want
flexibility. You should be looking for a
backend that gives you a framework
but doesn’t lock you into any one
way of doing things. For example, your
matchmaker. Every studio is going to
have its own criteria for what makes a
good match, so your backend should
allow you to create those rules yourself.

18

Keep your
game alive
Games these days are going to have
ongoing costs. Whether that’s because
you have some sort of progression
system or multiplayer mechanics.

“Even small titles have
rich in-game economies
and systems of
progression these days,”
Trapper said. “Now you’re
on the hook for paying
and maintaining it. What
if Apple changes its API
so your backend needs
to update? Your costs are
going to continue.”
While some costs will naturally scale
with your players, you’re going to have
some amount of baseline. In fact, you
should expect to spend about 10-15%
on your backend server costs.

Treat everything
as content
One way to keep your game alive is to
release new content regularly. For that,
you’ll need a content management
system. Thankfully, if you have a
backend, you already have the systems
in place to support that.

“What is a level in your
game? It’s a series of
instructions of what to put
on the screen,” Trapper
said. “Those instructions
come from structured
data. If you don’t have a
backend, that’s all on the
local device. The only way
to change or add a level is
to update the client.”
Instead, you can have all this
information stored in a content
management system. The player can
just pull the content when they load up
the game. New offers in your store, new
seasonal events, new character dialogue,
new weapons, cards and powerups. It’s
all content.

Designing your game in this way allows
you to continue updating your game,
without needing to go back through
approval processes or create and test a
brand-new build.

19

20

Make cross-
platform much
easier
Cross-platform helps open your
game up to more players. In fact,
VentureBeat reported that it can
increase revenue between 20% and
40%. So if you want your players to
be able to play with people on other
platforms or to take their data from PC
to console, a backend helps you keep
that data consistent between devices.

“It’s all about the
authentication,” Trapper
said. “Who is this person?
Every platform has its own
ID. If you only use, say,
Steam, you’re going to
have trouble when they
want to play on Xbox. But
if you have somewhere to
hold all those IDs, you can
link them all to a single
user.”
This might not just be for cross-
platform play. You might want to
integrate with Discord or Twitch to
give your players certain privileges or
features. These integrations are much
easier if you have that central place to
store all the information.

The earlier you release your game, the
sooner you can make improvements
and start earning revenue. With a tool
like Beamable, you can get all the
backend features you need to get up
and running quickly.

“We want to eliminate the need
to have a backend developer in
your team by providing you the
workflow from inside the game
engine itself,” Trapper said. “Our
goal is to give you the tools, so
you can implement everything
you need to realise your game’s
vision.”

In fact, Beamable allows you to get all
your backend features from a single
SDK.

•	 Run a wide range of backend tasks.
Manage your in-game economy,
authenticate users, gather analytics
data, and provide social features
to your players using off-the-shelf
managed services.

•	 Customise game features for
your needs. With Beamable’s C#
Microservices architecture, you can
easily edit the source code and
add exactly what you need to your
game.

•	 Get the tools and data you need.
Access your game through a full-
featured liveops portal for player
CRM, analytics, and usage data.

Try out
for free
Developers can sign up and start using
Beamable in just a few minutes. No
need to talk to anyone. No need to pay
anything. Just grab the SDK, install it
and see if it works for you.

Hit your launch deadline

https://venturebeat.com/business/taking-your-game-cross-platform-can-increase-revenue-by-20-to-40-vb-live/
https://venturebeat.com/business/taking-your-game-cross-platform-can-increase-revenue-by-20-to-40-vb-live/
https://venturebeat.com/business/taking-your-game-cross-platform-can-increase-revenue-by-20-to-40-vb-live/
https://beamable.com/?utm_source=gameye-report

21

How do you
keep your
players happy?

Chapter four

Choose your orchestration system

Keep your multiplayer games running with an orchestration system

When you’re running a multiplayer
game, you need a server to host the
multiplayer match. It’s the only way to
make sure that the match is fair and
fun to all the players.

“In a competitive game,
you can’t have one of the
players hosting the match.
You want a trustworthy
and reliable experience
for your players,” Roberto
Sasso – chief technology
officer here at Gameye –
said.

“It just gives them an
unfair advantage. It’s
not just that they could
interfere with the match
and cheat, they also have
a time advantage. Their
machine just knows what’s
happening before anybody
else.”
Milliseconds might not sound like
much. But in a competitive first-
person shooter, reaction times matter. A
millisecond could be all you need to fire
first.

The solution to these problems is to
host the match on an independent
server. That way, nobody has an
advantage and nobody can cheat. But
where exactly do you put that machine?

That’s where orchestration comes in –
deciding where to host your matches.
And being able to take a different
choice for each match.

21

22

An orchestrator takes information about
who should be in the match, then
calculates the ideal server to host it.

Handle
unpredictable
spikes
There are plenty of reasons that your
game might suddenly have a surge of
new players. A streamer might have
recently played it. You might be running
a weekend offer. Rave reviews might hit
the news.

But do you have the infrastructure in
place to handle those new players?
How do you scale to meet the sudden
demand? If you can’t, those new players
can’t find a match and get frustrated.

“Nobody really talks about how
infrastructure can impact a
game’s success,” Roberto said.
“Cloud costs can easily rack
up and eat into your profit
margins if you’re not careful.
At the same time, cloud can
help you tackle spikes. So you
want to find the right balance
between hosting types.”

Balancing between all the possible
solutions is time-consuming work. So
you’ll need to hunt for the right people
to do the job.

You can see what happens when a
developer gets this wrong. In 2024,
Palworld ended up spending over
$475,000 a month on server costs,
according to PC Gamer. That kind of
spending is just unsustainable in the
long run.

Kill lag before it
kills your game
Lag can ruin a player’s experience. It
breaks immersion and makes a game
almost impossible to play. It’s just
frustrating.

“We’ve all had that match
where you’re jumping around
the map, jittering back and
forth,” Roberto explained.
“Finding the root cause might
be harder than expected. In an
online game, you have to deal
with a multitude of mutating
components because of factors
you can’t control.”

There are two metrics that are
important here. Bandwidth and latency.
Bandwidth is how much data you can
send at the same time. Latency is how
long that data physically takes to get to
its destination.

In real-time multiplayer matches, you’re
not usually sending huge amounts of
data. But you do need that data to
arrive as quickly as possible. So it’s the
latency that matters the most.

“The only realistic way to
reduce latency is to host the
match on a server as close
to the players as physically
possible,” Roberto said. “You
can’t do anything about
problems in the player’s local
network, but you can reduce
the length of the trip. And, if
you use your own matchmaker,
you might have false positives
on latency and bandwidth
that’s actually a bug in the
matchmaking. So keep an
eye on how your systems are
interacting.”

22

https://www.pcgamer.com/palworld-costs-launch-servers/

“You really need to look
at the cost per concurrent
player before you launch
a multiplayer game,”
Roberto said. “How much
are you going to spend
per player every month?
And how are you going
to cover that cost? There
are ways to cut it down,
but if you’re planning on
running a game for years
– you’re going to need a
monetization strategy.”

Test everything
to avoid
downtime
If your players can’t play your game,
they’ll naturally get angry. So a single
outage can cause a surge of bad
reviews, which can seriously damage
your game’s reputation. For example,
Helldivers 2’s reviews on Steam
dropped from “very positive” to “mixed”
in just a few days following server
issues, according to GameRant. This
was primarily because they had only
predicted getting 50,000 players, but
ended up with hundreds of thousands.

It’s impossible to predict exactly how
many players you’ll have. But, you can
test different scenarios to make sure
that your infrastructure can handle the
load.

In fact, there are three main types of
test you should perform:

•	 Load – Add more and more sessions
and players to your infrastructure
until you find the breaking point.

•	 Soak – Run your infrastructure for
an extended period of time to see
how long it can last before there are
problems.

•	 Spike – Add a sudden surge of
players to your infrastructure to
discover what might cause it to
break.

“Everything breaks
eventually, so you need to
know what causes those
issues,” Roberto explained.
“If you know what the
problems might be, you
can preemptively solve
them. For example, you
might simply reboot your
servers more often or add
other ways to scale.”
It’s important to remember that
testing your infrastructure is different
to playtesting your game. You’re not
looking at whether the game is fun and
balanced, you’re looking for the hidden
computing limits in your infrastructure.
Computing limits that will destroy a
player’s experience and set your game
up for failure.

23

24

Create a
war room
One of the most difficult times for a
new game is in the first few days after
you launch or release a new event. In
those moments, you’re inevitably going
to get a surge of new players. That’s the
whole point.

“These are the times
when you need to have
a close eye on your
infrastructure,” Roberto
said. “You should have a
war room, monitoring the
health of your network and
using observability tools to
predict if there might be
a problem. That way, you
can jump on issues before
a cascade effect impacts
your entire infrastructure.”
Whatever way you decide to keep on
top of your infrastructure, the reality is
the same: you need to be alert.

You need to treat your players like
customers getting a service.

Gameye’s orchestrator automatically
figures out where your servers should
be and scales to meet the demand. All
you need to do is tell the orchestrator
which regions you want through the API.

“We can save developers up to
70% on their server costs, by
using a mixture of bare-metal,
cloud and edge computing,”
Roberto explained. “We also
automatically scale across
providers, so there’s always a
backup. Even if one provider has
a problem, we can just switch
you to another. Your players
won’t even notice.”

The Gameye orchestrator was built from
the ground up to deal with power-
hungry games and has been battle-
tested on multiplayer titles that demand
a lot from their servers.

•	 Get set up quickly. All you need to
do is pick your regions, containerise
your game and upload the image.
The whole process can be done in
just an hour.

•	 Reach players globally. With servers
across the world, you can easily
handle players from Asia to America.
Pay only for what you use. Gameye
only charges you for the time you
use, when you use it.

Playtest for free
with
Gameye offers free servers to indie
developers during their playtesting and
development. So you can try it out and
see if it works for you.

Automate your server
infrastructure

https://gameye.com/?utm_source=gameye-report

25

How do you
deal with
problems?

Chapter five

Choose your crash reporting system

Learn why your game is crashing with crash-reporting tools

No program is perfect all the time, on
every machine. There are always going to
be edge cases, surprises and exceptions.
But you can’t solve a problem if you
don’t know about it. So you need a crash
reporting system in place to tell you
when there’s a problem.

25

26

Find the root
cause of
problems
A crash reporting tool alerts you when
a player’s game crashes, but also tells
you the line of code where the crash
happened. It gives you an overview of
the state the computer and game were
in at the time of the crash. This makes
it much easier to identify the root
cause.

Without a crash reporting system, you’re
relying solely on what the player has
told you. Players aren’t professional
testers, so their feedback can often be
vague or unhelpful. Your QA team is
now trying to replicate the problem with
very limited information.

“You spend so much time
building your game, testing
it, shipping it out, but
you’ll never know how it
performs in the wild,” Joey
P – the product manager
at BugSplat – told us.
“Crash reporting is about
figuring out what you need
to fix, how stable your
game is and whether you
have any critical issues.”
Video games are particularly vulnerable
to crashes. They’re complex programs
that are tough on graphics cards and
drivers, running on a huge variety of
computers.

“You don’t control what
graphics card they’re using,
how much memory they
have, or whether they’ve
updated their drivers,” Joey
added. “It’s impossible to
test for every combination.
So you need a way to
identify what’s causing the
issue.”

26

Chapter one

“If you have the right
information, you don’t
have to replicate it,” Joey
explained. “Instead of
chasing down the bug,
you’re able to see exactly
what was going on when
the computer crashed.
Or you can prompt the
player to give more useful
feedback.”

This drastically reduces the amount
of time you’re spending on fixing
the problem. Your developers can see
exactly which part of the code went
wrong.

Prioritise what
to fix
Not all crashes are equal. While crashes
are extremely frustrating for the player,
you don’t want to waste your time on
a problem that only one in a million
people experience. You want to work
on the most common crashes first.
The best way to think about this is to
consider how stable your game is. For
how many players does it crash?

“About 10% of your defects
are responsible for about
90% of your instability,”
Dave Plunkett – BugSplat’s
CTO and Founder – said.
“But if you only rely on
people sending messages,
you’re only going to hear
from the loudest people.
You need an automated
way to track every instance
of a crash and to group
them together. Otherwise,
you don’t know which
defects are the important
ones.”

27

28

You don’t just want to add a crash
reporting tool for when your game goes
live. It’s a helpful tool throughout the game
development process.

“Crashes that make it to production
are the hardest to fix as you
need to ship a new version,” Joey
explained. “They’re also the most
insidious problems. It could be an
error that’s fundamental to your
game, with loads of dependencies.
The longer you leave that unfixed,
the longer it takes.”

BugSplat’s crash reporting tool helps you
not only get the crash data you need to
solve the problem but also manage the
process.

•	 Get started with a couple of lines of
code. Adding BugSplat to your game
is as easy as downloading the package
and adding a line of initialization code
at the beginning. And in the Unreal
engine, it’s even easier. You just need
to update your configuration files.

•	 Improve your player experience.
When your game crashes, you can
customise the popup. If it’s a crash
you know about, you can even include
a message that explains how to fix
it. You’e now turned that negative
moment into a positive one.

•	 Keep track of your versions. If
you think you’ve solved a problem,
but it comes back – the crash will
automatically get flagged as in
regression.

Get alerts for free
with
BugSplat has a generous free plan that
allows you three users, a month of data,
and records up to 15,000 crashes a month.
So you can get started right away.

Embed crash reporting early

Without these metrics, you can also end up
with a false sense of security.

“About ten people will
experience a crash before
someone reports it,” Dave
added. “If you don’t have a
tool, you’ll be surprised how
often your game crashes
without anybody talking
about it.”

Get one month free
Use code ‘BugsplatGameDevOneMonth’ and get
one month free on BugSplat’s Team plan.

28

https://www.bugsplat.com/?utm_source=gameye-report

4.

3.
2.
1. They all easily plug into your

game engine
Even if you’re using an obscure game
engine or have built your own, all the
providers in this guide will work with
you to make sure their system works
with you.

They scale with you
As your studio grows, you’ll have more
team members and more players. In
both cases, you want tools that can
handle that growth – without becoming
expensive.

They’re the experts in their
fields
It’s always better to bring in a specialist
than a generalist. Their sole focus is on
developing their tools and making them
the best they can be – updating them
when there are changes in the industry
and coming up with new features. They
spend all their time on their tools, so
you don’t need to spend any.

They all work together
Everything in this guide works together,
so you can make sure that you’ve got
all the tools you need to run your
studio like a business.

Bring everything
together
Time is money. If you have an efficient
studio – one where your team can
easily work through the development
process – you can iterate quickly and
release updates to your game faster.

In the long run, you don’t just save
money – you can focus your time and
effort on more important tasks: making
your game fun and exciting.

Take your time deciding
Every game is different, and you
should always look at all your options
before settling on the tools you
want to use. Don’t dive into getting
everything from a single provider or
make sure that it’s easy to switch if
you do. You don’t want to get trapped
with a big provider that doesn’t give
you the flexibility you need.

That’s why we’ve brought together the
tools in this guide.

Commit to your game
If you need a hand, we’re here to
walk you through the process of
getting set up with the tools you
need and making sure everything
works.

29

30

Meet your experts

Sean Saleh
Co-Founder at
contact@gamebreaking.com
Sean has spent the past 6 years becoming an expert
in Game Build Systems. Starting with going deep into
many different games’ build systems and rewriting them,
and now he’s heading up a team making a product that
easily supports many different developers at once.

Fabian Ahmadi
Co-founder at
fabian@solsta.io
Fabian Ahmadi is a co-founder at Solsta.io with over
20 years of experience in the games industry. He
leads Sales and Business Development, helping studios
streamline build distribution workflows. Fabian is also the
co-founder of ConSpire Seattle, a networking event for
games professionals in the Greater Seattle Area.

Trapper Markelz
Co-Founder and COO at
trapper@beamable.com
Trapper Markelz, currently COO at Beamable,
has over 25 years of experience building teams,
companies, and delivering consumer-facing software
products. He has served as CEO of MeYou Health,
co-founded GamerDNA and 360voice.com, and was
CPO at Disruptor Beam.

Roberto Sasso CTO at
sales@gameye.com
Roberto Sasso is CTO of Gameye. He was the
former Managing Director of Racing Controllers
manufacturer Cube Controls. Lead the architecture
for Yoox. Was the CTO for PizzaBo. And steered
companies through huge billion-dollar acquisitions.

Joey P, Product Manager at
joey@bugsplat.com
Joey P. is the Head of Product at BugSplat, a
proudly bootstrapped and independent small
startup, where he has been driving product
innovation and business operations for nearly 10
years. In addition to leading strategy, Joey remains
hands-on with web development and UI/UX design.

31

